
A Scalable Nonuniform Pointer Analysis for
Embedded Programs?

Arnaud Venet

NASA Ames Research Center / Kestrel Technology
Moffett Field, CA 94035, USA
arnaud@email.arc.nasa.gov

Abstract. In this paper we present a scalable pointer analysis for em-
bedded applications that is able to distinguish between instances of re-
cursively defined data structures and elements of arrays. The main con-
tribution consists of an efficient yet precise algorithm that can handle
multithreaded programs. We first perform an inexpensive flow-sensitive
analysis of each function in the program that generates semantic equa-
tions describing the effect of the function on the memory graph. These
equations bear numerical constraints that describe nonuniform points-to
relationships. We then iteratively solve these equations in order to ob-
tain an abstract storage graph that describes the shape of data structures
at every point of the program for all possible thread interleavings. We
bring experimental evidence that this approach is tractable and precise
for real-size embedded applications.

1 Introduction

The difficulty of statically computing precise points-to information is a major
obstacle to the automatic verification of real programs. Recent successes in the
verification of safety-critical software [BCC+03] have been enabled in part be-
cause this class of programs makes a very restricted use of pointer manipulations
and dynamic memory allocation. There are numerous pointer-intensive applica-
tions that are not safety-critical yet still require a high level of dependability like
unmanned spacecraft flight control, flight data visualization or on-board network
management for example. These programs commonly use arrays and linked lists
to store pointers to semaphores, message queues and data packets (for interpro-
cess communication), partitions of the memory, etc. Existing scalable pointer
analyses [Ste96,FFSA98,Das00,HT01] are uniform, i.e. they do not distinguish
between elements of arrays or components of recursive data structures and are
therefore of little help for the verification of these programs. It is the purpose of
this paper to address the problem of inferring nonuniform points-to information
for embedded programs.

Few nonuniform pointer analyses have been studied in the literature. The first
one has been designed by Deutsch [Deu92,Deu94] and applies to programs with
? This work was supported in part by the RTD project IST-1999-20527 DAEDALUS

of the european IST FP5 programme.

explicit data type annotations. We first redesigned Deutsch’s model in order to
analyze languages like C in which the type information cannot be trusted to infer
the shape of a data structure [Ven96,Ven99]. However both approaches rely on
a costly representation of the aliasing as an equivalence relation between access
paths, which makes this kind of analysis inapplicable to programs larger than a
few thousand lines. We therefore designed a new semantic model [Ven02] that is
both more compact and more expressive than the one based on access paths. The
interest of the latter approch lies in the representation of dynamic memory allo-
cation using numerical timestamps, which turns pointer analysis into the classical
problem of computing the numerical invariants of an arithmetic program. In the
case of a sequential program, various optimization techniques can be applied that
break down the complexity of analyzing large arithmetic programs as described
in [BCC+02,BCC+03]. In the case of multithreaded arithmetic programs how-
ever, there are no proven techniques that can cope with shared data and thread
interleaving efficiently and precisely. This is a major drawback knowing that
most embedded applications are multithreaded.

In this paper we present a pointer analysis based on the semantic model
of [Ven02] that can infer nonuniform points-to relations for multithreaded pro-
grams. From our experience with the verification of real embedded applications
we observed that collections of objects are usually manipulated in a very reg-
ular way using simple loops. Furthermore, these loops are generally controlled
by local scalar variables like an array index or a pointer to the elements of a
list. It is quite uncommon to find global array indices or lists that are modi-
fied across function calls. Therefore, the information flowing through this local
control structure is sufficient in practice to describe exactly the layout of ar-
rays and the shape of linked data structures. We call it the surface structure
of a program. In the new model proposed here we first perform a flow-sensitive
analysis of the surface structure that automatically discovers numerical loop in-
variants relating array positions and timestamps of dynamically created objects.
We use these invariants to generate semantic equations that model the effect of
the function on the memory. We then iteratively solve the system made of the
semantic equations generated from all functions in the program. A similar ap-
proach has been applied in [WL02] for improving the precision of inclusion-based
flow-insensitive pointer analyses. Our model can be seen as a natural extension
to Andersen’s algorithm [And94] in which variables are indexed by integers de-
noting array positions and timestamps, and inclusion constraints bear numerical
relations between the indices of variables. We will carry on the presentation of
the analysis with this analogy in mind.

The paper is organized as follows. In Sect. 2 we define the base semantic
model and the surface structure of a C program. The semantics is based on
timestamps to identify instances of dynamically allocated objects. Section 3 de-
scribes the abstract interpretation of the surface structure and the inference of
numerical invariants. In Sect. 4 we show how to generate nonuniform inclusion
constraints from the numerical relationships obtained by the analysis of the sur-
face structure. The iterative resolution of these constraints provides us with a

global approximation of the memory graph. We describe the implementation of
an analyzer for the full C language in Sect. 5 and give some experimental re-
sults from the analysis of a real device driver. We end the paper with concluding
remarks and future work.

2 Base Semantic Model

In [Ven02] we have introduced a semantic model that uniquely identifies instances
of dynamically allocated objects by using timestamps of the form 〈λ1, . . . , λn〉
where the λi are counters associated to each loop enclosing a memory allocation
command. Consider for example the following piece of code:

Example 1.

for(i = 0; i < 10; i++)
for(j = 0; j < 3; j++)
a[i][j].ptr = malloc (...);

In that model we would consider the couple 〈i, j〉 as a timestamp for distinguish-
ing between calls to the malloc command. In this paper we use a simplified model
which folds all nested loop counters into one. In the previous example, this would
result into considering the timestamp 3i+j. This amounts to having one global
counter λ that is incremented whenever the execution crosses a loop and is reset
to 0 whenever the execution exits an outermost loop. While both models are
equivalent in uniquely identifying dynamically allocated memory, the loss of in-
formation about nested loop counters may lead to imprecisions when timestamps
are represented by abstract numerical lattices [Kar76,CH78,Gra91,Min01]. This
is not an issue in embedded applications since almost all loops have constant
iteration bounds and arrays are traversed in a regular way as in the example
above. This type of loop invariants can be efficiently and exactly computed by
using the reduced product [CC79] of the lattices of linear equalities [Kar76] and
intervals [CC76] for example.

Because C allows the programmer to change the layout of a structured block
via aggressive type casts, using symbolic data selectors like in [Ven02] for repre-
senting points-to relations is quite challenging (see [CR99] for a detailed discus-
sion of type casting in C). In our case this would make the analysis overly compli-
cated since we also have to manage numerical constraints that relate timestamps
and positions within blocks. We choose a simple solution that consists of using a
homogeneous byte-based representation of positions within memory blocks. This
means that a field in a structure is identified by its byte offset from the beginning
of the structure. As a consequence we must take architecture-dependent charac-
teristics like alignment and padding into account. Fortunately, most C front-ends
provide this information for free. In such a model an edge in the points-to graph
has the form 〈a, o〉 B 〈a′, o′〉 where a,a′ are addresses of blocks in memory and
o, o′ are byte offsets within these blocks.

Our purpose is to abstract a C program into a system of points-to equations
expressed by inclusion constraints similarly to Andersen’s analysis [And94]. Since

Stmt ::= n = c (c ∈ IN) | p = ∗q
| n = m + o | ∗p = q

| n = m ∗ o | p = malloc()
| p = &x | while (m < n) do s1; · · · ; sn end

| p = q + n

Fig. 1. Syntax of the core pointer language

we want to express nonuniform aliasing relationships, we need to assign position
and timestamp indices to semantic variables and relate them by using numerical
constraints. For example, we would like to generate an inclusion constraint for
the piece of code of Example 1 that looks like:

∗(&a + (i× s + optr)) ⊇malloct where i = t ∧ t ∈ [0, 29]

where s is the size of the structure contained in the two-dimensional array,
optr is the offset of the field ptr in that structure and t is the timestamp
of the memory allocation statement. In order to infer this kind of constraint
we must first perform a flow-sensitive analysis over a relational numerical lat-
tice [Kar76,CH78,Gra91,Min01] that computes invariants relating loop counters,
array indices and timestamps. The main difference from [Ven02] comes from the
fact that we generate inclusion constraints without any prior knowledge of the
layout of objects in the heap. In this case it is not obvious what to do with the
following piece of code:

Example 2.

for(i = 0; i < 10; i++) {
p = p->next;

}

The rest of this section will be devoted to defining a concrete semantic model
that will allow us to handle this situation simply and precisely.

We base our semantic specification on a small language that captures the
core pointer arithmetic of C at the function level. The treatment of interproce-
dural mechanisms is postponed until Sect. 4 where we will detail the generation
of inclusion constraints. We call surface variable a variable which has a scalar
type, either integer or pointer, and which does not have its address taken. The
syntax of the language is defined in Fig. 1, where we denote by p, q, r pointer-
valued surface variables, by m, n, o integer-valued surface variables, and by x, y, z
all other variables. We assume that the variable on the left handside of an assign-
ment operation does not appear on the right handside. This will facilitate the
design of the numerical abstract interpretation in Sect. 3. It is always possible
to rewrite the program in order to satisfy this assumption. Note that in order
to keep the presentation simple, we focus on fundamental arithmetic operations
and loops. All other constructs can be analyzed along the same lines. We use

this language to model the computations that occur locally within the body of
a C function, excluding calls to other functions. A program P in this language
is just a sequence of statements describing the pointer manipulations performed
by a function. We provide P with a small-step operational semantics given by a
transition system (Σ,→) defined as follows.

We first need some notations. We assume that each statement of P is assigned
a unique label `. If ` is the label of a statement, we denote by next(`) the label of
the next statement of P to be executed in the natural execution order. If ` is the
label of a loop we denote by top(`) the predicate that is true iff the statement
at ` is an outermost loop. A state of Σ is a tuple 〈λ, M, %, `〉 where λ is an
integer denoting the global loop counter used for timestamping, M is a memory
graph, % is an environment and ` is the label of the next statement to execute.
A memory graph is a collection of points-to edges 〈a, o〉B 〈a′, o′〉 where a,a′ are
addresses and o, o′ are integers representing byte offsets. An address is either
the location of a global variable &x or a dynamically allocated block blk`〈t〉,
where ` is the location of the allocation statement and t is a timestamp. We use
a special address null to represent the NULL pointer value in C. The mapping
defined by a memory graph is functional, i.e. there is at most one outcoming
edge for each memory location 〈a, o〉. We denote by M〈a, o〉 the target location
of the edge originating from the location 〈a, o〉 if it exists or 〈null, 0〉 otherwise.
We denote by M [〈a, o〉B 〈a′, o′〉] the memory graph M which has been updated
with the edge 〈a, o〉B 〈a′, o′〉.

We split down each pointer variable p into two variables pa and po that re-
spectively denote the address of the block and the offset within this block to
which p points. An environment % maps variables n, po to integers and variables
pa to addresses. We denote by %[u← v] the environment % in which the variable
u has been assigned the value v. Finally, we denote by Ω a special element of
Σ representing the error state. The transition relation → of the operational se-
mantics is then defined in Fig. 2. An initial state in this operational semantics
assigns arbitrary integer values to surface integer variables and the null memory
location to surface pointer variables. This amounts to considering integer vari-
ables as uninitialized and pointers initialized to NULL. For consistency the initial
value of λ should be 0. In our framework an initial state describes the memory
configuration at the entry of the C function that is modeled by the program P .

The transition rule for loop exits requires some explanations. The global loop
counter λ is incremented at the end of each loop iteration and decremented when-
ever the execution steps out of a nested loop. Whether the global loop counter
is decremented or left unchanged at loop exit has no effect on the uniqueness
of timestamps. However decrementation is required in order to preserve linear
relationships between λ and byte offsets during the traversal of multidimensional
arrays. Consider the two nested loops of Example 1. We keep the previous no-
tations and we denote by O the byte offset within a on the lefthand side of
the assignment. Then, the relation between O and the loop counters is given by
O = 3× s× i+ s× j+ optr. If we use the decrementation rule at loop exit, the
global loop counter value is given by λ = 3 × i + j, hence O = s × λ + optr.

〈λ, M, %, ` : n = c〉 → 〈λ, M, %[n← c],next(`)〉
〈λ, M, %, ` : n = m + o〉 → 〈λ, M, %[n← %(m) + %(o)],next(`)〉
〈λ, M, %, ` : n = m ∗ o〉 → 〈λ, M, %[n← %(m)× %(o)],next(`)〉
〈λ, M, %, ` : p = &x〉 → 〈λ, M, %[po ← 0, pa ← &x],next(`)〉
〈λ, M, %, ` : p = q + n〉 → 〈λ, M, %[po ← qo + %(n), pa ← %(qa)],next(`)〉

〈λ, M, %, ` : p = ∗q〉 →
{

Ω if %(qa) = null
〈λ, M, %[(pa, po)←M 〈%(qa), %(qo)〉],next(`)〉 otherwise

〈λ, M, %, ` : p = malloc()〉 → 〈λ, M, %[pa ← blk`〈λ〉, po ← 0],next(`)〉

〈λ, M, %, ` : ∗p = q〉 →
{

Ω if %(pa) = null
〈λ, M [〈%(pa), %(po)〉B 〈%(qa), %(qo)〉], %,next(`)〉 otherwise

〈λ, M, %, ` : while (m < n) do `′ : s1; · · · end〉 → 〈λ, M, %, `′〉 if %(m) < %(n)

〈λ, M, %, ` : while (m < n) do . . . end〉 →
{
〈0, M, %,next(`)〉 if %(m) ≥ %(n) and top(`)
〈λ− 1, M, %,next(`)〉 otherwise

〈λ, M, %, ` : end〉 → 〈λ + 1, M, %, `′ : while (. . .) do . . . ` : end〉

Fig. 2. Operational semantics of the core pointer language

Without this rule λ would be equal to 4 × i + j and the relationship between
the global loop counter and O would be lost, thereby preventing the inference
of a nonuniform points-to relation.

This operational semantics is similar to the one described in [Ven02] with
a simplified timestamping. We need to instrument the semantics by adding an
intermediate layer between the environment and the memory that keeps track of
all memory accesses. Whenever a location is retrieved from the memory, we use
a timestamp to tag it with a unique name that we call an anchor, and we keep
the binding between this anchor and the actual memory location in a separate
structure A called the anchorage. The local environment % now maps the address
component of a surface variable pa either to an address that explicitly appears
in the body of a C function or to an anchor. We call this refined semantics the
surface semantics. More formally, the surface semantics (Σs,→s) of a program
P is defined as follows. A extended state of Σs is a tuple 〈λ, A,M, %, `〉 where
〈λ, M, %, `〉 ∈ Σ and A is an anchorage. An anchor ref `〈t〉 denotes the value
returned by the execution of a memory read command ` : p = ∗q at program
point ` on time t. The anchorage maps an anchor ref `〈t〉 to an actual memory
location 〈a, o〉. If 〈a, o〉 is a location stored in the environment ρ, a may either
be an address or an anchor. We define the resolution function getA which maps
〈a, o〉 to the corresponding memory location as follows:

getA〈a, o〉 =

 〈null, 0〉 if a is an anchor and A(a) = 〈null, 0〉
〈a, o + o′〉 if a is an anchor and A(a) = 〈a, o′〉
〈a, o〉 if a is an address a

If p is a surface pointer and % is an environment, we denote by getA,%(p) the
memory location getA〈%(pa), %(po)〉. The transition relation →s of the surface
semantics is then defined in Fig. 3. The error state in this semantics is also

〈λ, A, M, %, ` : p = ∗q〉→s

Ω if getA,%(q) = 〈null, o〉〈

λ, A[ref `〈λ〉 ←M(getA,%(q))],
M, %[pa ← ref `〈λ〉, po ← 0],next(`)

〉
otherwise

〈λ, A, M, %, ` : ∗p = q〉→s

Ω if getA,%(p) = 〈null, o〉〈

λ, A, M [getA,%(p) B getA,%(q)],
%,next(`)

〉
otherwise

For all other statements:
〈λ, M, %, `〉 → 〈λ′, M ′, %′, `′〉

〈λ, A, M, %, `〉→s〈λ′, A, M ′, %′, `′〉

Fig. 3. Surface semantics of the core pointer language

denoted by Ω. An initial state in the surface semantics is simply an initial state
in the base semantics with an empty anchorage. We denote by I the set of all
initial states.

We are interested in the collecting semantics [Cou81] of a program P , that
is the set C = {i ∗→s s | i ∈ I} of all states reachable from any initial state I. We
define the surface structure S of P as follows:

S = {〈λ, %, `〉 | ∃M ∃A : 〈λ, A,M, %, `〉 ∈ C}

An element 〈λ, %, `〉 is called a surface configuration. The program P models
the pointer manipulations performed by a single C function. Our purpose is to
compute a global approximation of the memory for a whole C program by first
performing an abstract interpretation of the surface structure of each function
in the program. The design of this abstract interpretation is straightforward
because the surface structure is independent from the data stored in the heap and
does not interfere with other threads. We will then generate inclusion constraints
from the results of the analysis of the surface structure that will provide us with
a global approximation of the memory and the anchorage structure as well.

3 Abstract Interpretation of the Surface Structure

We describe the analysis of the surface structure within the framework of Ab-
stract Interpretation [CC77,CC79,Cou81,CC92]. We define an abstract environ-
ment by a pair 〈ν], π]〉 as follows:

– The component ν] is an abstract numerical relation belonging to a given
numerical lattice V] [Kar76,CH78,Gra91,Min01] that we leave as a param-
eter of our analysis. The abstract relation ν] is a collection of numerical
constraints between all integer valued variables n, po of the program and a
special variable Λ denoting the value of the global loop counter.

– The component π] maps every variable po to a set of abstract addresses.

An abstract address is either the address of a global variable &x, a dynamically
allocated block blk]

`〈µ]〉 or an anchor ref]
`〈µ]〉, where µ] is a abstract numerical

[[n = c]]]
〈
ν], π]

〉
=

〈
(ν] 	 {n})⊕ {n = c}, π]

〉
[[n = m + o]]]

〈
ν], π]

〉
=

〈
(ν] 	 {n})⊕ {n = m + o}, π]

〉
[[n = m ∗ o]]]

〈
ν], π]

〉
=

〈
(ν] 	 {n})⊕ {n = m× o}, π]

〉
[[p = &x]]]

〈
ν], π]

〉
=

〈
(ν] 	 {po})⊕ {po = 0}, π][pa ← {&x}]

〉
[[p = q + n]]]

〈
ν], π]

〉
=

〈
(ν] 	 {po})⊕ {po = qo + n}, π][pa ← π](qa)]

〉
[[` : p = ∗q]]]

〈
ν], π]

〉
=

〈
(ν] 	 {po})⊕ {po = 0},
π][pa ← {ref]

`〈bν
] ⊕ {τ = λ}cτ,λ〉}]

〉
[[` : p = malloc()]]]

〈
ν], π]

〉
=

〈
(ν] 	 {po})⊕ {po = 0},
π][pa ← {blk]

`〈bν
] ⊕ {τ = λ}cτ,λ〉}]

〉
[[∗p = q]]]

〈
ν], π]

〉
=

〈
ν], π]

〉
Fig. 4. Abstract surface semantics of atomic statements

relation between the loop counter variable Λ and a special timestamp variable
denoted by τ . We assume that for each set of abstract addresses, there is at most
one abstract address blk]

`〈µ]〉 or ref]
`〈µ]〉 per program location `. Therefore, the

set E] of all abstract environments is isomorphic to the product
∏

i∈I V] of the
numerical lattice over a fixed family I. We provide E] with the structure of a
lattice by lifting all operations of V] to E] pointwise.

The denotation γV](ν]) of an abstract numerical relation is a set of variable
assignments ε that satisfy the numerical constraints expressed by ν]. If x1, . . . , xn

are numerical variables and v1, . . . , vn are integer values, we denote by ν]〈x1 7→
v1, . . . , xn 7→ vn〉 the predicate that is true iff there is an assignment ε ∈ γV](ν])
such that ε(xi) = vi for all 1 ≤ i ≤ n. The denotation γE]〈ν], π]〉 of an abstract
environment is the set of all pairs 〈λ, %〉 where λ ∈ IN and % is an environment
of the surface semantics, such that:

– ν]〈n 7→ %(n), . . . , po 7→ %(po), . . . , Λ 7→ λ〉 for all variables n, . . . , p, . . . of the
program

– %(pa) = &x⇒ &x ∈ π](pa)
– %(pa) = blk`〈t〉 ⇒ blk]

`〈µ]〉 ∈ π](pa) ∧ µ]〈τ 7→ t, Λ 7→ λ〉
– %(pa) = ref `〈t〉 ⇒ ref]

`〈µ]〉 ∈ π](pa) ∧ µ]〈τ 7→ t, Λ 7→ λ〉

An abstract surface configuration of the program is a family 〈ν]
` , π

]
`〉`∈Loc(P) of

abstract environments, one for each location ` in the program P considered. We
provide the set of all abstract surface configurations with a lattice structure by
pointwise extension of operations from E]. The denotation γ〈ν]

` , π
]
`〉`∈Loc(P) of

ans abstract configuration is the set of all surface configurations 〈λ, %, `〉 such
that 〈λ, %〉 ∈ γE]〈ν]

` , π
]
`〉.

Following the methodology of Abstract Interpretation, we must now define
the abstract semantics of the language. We first have to define some operations
on the abstract numerical lattice V]. If ν] ∈ V] and V is a set of variables,
we denote by ν] 	 V the abstract numerical relation in which all information
about variables in V has been lost, and by bν]cV the relation that only keeps

information for variables in V . If S is a system of arbitrary numerical con-
straints, we denote by ν] ⊕ S an abstract numerical relation representing all
variable assignments that are in the denotation of ν] and that are also solutions
of S. If v is a variable, we denote by ν][v := v + c] the operation that con-
sists of adding the increment c to the value of v. The implementation of these
operations depends on the abstract numerical lattice considered, and we refer
the reader to the corresponding papers for more details about the underlying
algorithms [CC76,Kar76,CH78,Gra91,Min01]. We assign an abstract semantics
[[s]]] : E] → E] to each atomic statement s of the language as defined in Fig. 4.

If 〈ν], π]〉 is an abstract environment, we define the result 〈ν̄], π̄]〉 of the
operation incΛ〈ν], π]〉 as follows:

– ν̄] = ν][Λ := Λ + 1]

– ∀p : π̄](pa) =

&x if π](pa) = &x

blk]
`〈µ][Λ := Λ + 1]〉 if π](pa) = blk]

`〈µ]〉
ref]

`〈µ][Λ := Λ + 1]〉 if π](pa) = ref]
`〈µ]〉

We define the operation decΛ〈ν], π]〉 (resp. resetΛ〈ν], π]〉) similarly by substi-
tuting the operation Λ := Λ − 1 (resp. Λ := 0) to Λ := Λ + 1. The abstract
semantics of a program is then given by the least solution of a recursive system
of semantic equations

〈ν]
` , π

]
`〉 = F`

(
〈ν]

¯̀, π
]
¯̀〉¯̀∈Loc(P)

)
where F` is defined as follows:

– If ` = next(`′) and `′ is the location of an atomic statement s, then

F`

(
〈ν]

¯̀, π
]
¯̀〉¯̀∈Loc(P)

)
= [[s]]]〈ν]

`′ , π
]
`′〉

– If `′′ : while (m < n) do ` : s; · · · ; `′ : end, then

F`

(
〈ν]

¯̀, π
]
¯̀〉¯̀∈Loc(P)

)
= 〈ν]

`′′ ⊕ {m < n}, π]
`′′〉 t incΛ〈ν]

`′ , π
]
`′〉

– If ` = next(`′) and `′ : while (m < n) do . . . end, then

F`

(
〈ν]

¯̀, π
]
¯̀〉¯̀∈Loc(P)

)
=

{
resetΛ〈ν]

`′ ⊕ {m ≥ n}, π]
`′〉 if top(`′)

decΛ〈ν]
`′ ⊕ {m ≥ n}, π]

`′〉 otherwise

We apply classical fixpoint algorithms based upon iteration sequences with widen-
ing and narrowing [Cou81,CC92] in order to obtain an upper approximation S]

of the least fixpoint of the system.

Theorem 1. S] is a sound approximation of the surface semantics, i.e. S ⊆
γ

(
〈ν]

` , π
]
`〉`∈Loc(P)

)
.

For example, consider the following program in our core pointer language that
fills in an array a of pointers with newly allocated blocks:

Example 3.

1: n = 0;
2: while (n < 10) {
3: q = &a;
4: p = q + n;
5: r = malloc();
6: *p = r;
7: n = n + 1;
8: }

If we use the lattice of convex polyhedra [CH78] as the numerical lattice V],
then the abstract environment obtained after analysis of the surface structure
at program point 6 is:

〈
0 ≤ n < 10
Λ = n
qo = ro = 0
po = 4× n

,

pa 7→ {&a}
qa 7→ {&a}
ra 7→ {blk]

5〈τ = Λ, 0 ≤ Λ < 10〉}

〉

assuming that pointers occupy four bytes in memory.

4 Nonuniform Inclusion Constraints

We now use the analysis of the surface structure to build a global approxima-
tion of the memory graph. For this purpose we use an extension of Andersen’s
inclusion constraints [And94] enriched with numerical indices that allow us to
describe nonuniform points-to relations. The syntax of a nonuniform inclusion
constraint is the following:

Cst ::= 〈X (t) ⊇ &x + o, ν](t, o)〉
| 〈X (t) ⊇ blk`〈t′〉+ o, ν](t, t′, o)〉
| 〈X (t) ⊇ Y(t′) + o, ν](t, t′, o)〉〉
| 〈∗X (t) ⊇ Y(t′), ν](t, t′)〉
| 〈X (t) ⊇ ∗Y(t′), ν](t, t′)〉

where t, t′, o are special index variables denoting timestamp and offset values
and X ,Y are set variables. We assume that we are provided with a countable
collection of set variables. The second component ν] of a nonuniform constraint
is a system of numerical relationships between the index variables appearing in
the constraint.

The semantics of a system of nouniform constraints is based upon an abstract
memory graph. An abstract memory graph M] is a set of abstract points-to
relations

〈a(t, o) B a′(t′, o′), ν](t, t′, o, o′)〉

where a,a′ are addresses and t, t′, o, o′ are special index variables representing
the timestamps and offsets associated to each address. The abstract numerical

relation ν] expresses numerical constraints between these index variables. The
set M] of abstract memory graphs can be provided with the structure of a
lattice by pointwise extension of the corresponding lattice operations over V].
The denotation γM](M]) of an abstract memory graph is the set of memory
graphs such that the offsets on the points-to edges satisfy the constraints of the
corresponding abstract edges. A valuation V] of set variables is a set of mappings

〈X (t) 7→ a(t′) + o, ν](t, t′, o)〉

where a is an address and t, t′, o are numerical index variables. The set V al] of
all valuations can similarly be provided with the structure of a lattice. Note that
in the case of the address of a global &x, the associated timestamp variable does
not have any meaning and is not related by any numerical constraint. We use a
uniform notation in order to keep the semantic definitions simple. A valuation
can be seen as an abstraction of the anchorage structure defined in Sect. 2. The
semantics [[C]]] :M] × V al] → M] × V al] of a nonuniform inclusion constraint
C is defined as follows:

– [[〈X (t) ⊇ &x + o, ν]〉]]](M], V]) = (M], V] t {〈X (t) 7→ &x + o, ν]〉})
– [[〈X (t) ⊇ blk`〈t′〉+ o, ν]〉]]](M], V]) = (M], V]t{〈X (t) 7→ blk`〈t′〉+o, ν]〉})
– [[〈X (t) ⊇ Y(t′) + o, ν]〉〉]]](M], V]) = (M], V] t {〈X (t) 7→ a(t′′) + o′′,
bν] u µ] ⊕ {o′′ = o + o′}ct,t′′,o′′〉 | 〈Y(t′) 7→ a(t′′) + o′, µ]〉 ∈ V]})

– [[〈∗X (t) ⊇ Y(t′), ν]〉]]](M], V]) = (M] t {〈a(t, o) B a′(t′, o′), ν] u ν]
1 u ν]

2〉 |
〈X (t) 7→ a(t) + o, ν]

1〉 ∈ V] ∧ 〈Y(t) 7→ a′(t′) + o′, ν]
2〉 ∈ V], V])

– [[〈X (t) ⊇ ∗Y(t′), ν]〉]]](M], V]) = (M], V] t {〈X (t) 7→ a′(t′′′) + o′, µ]〉 |
〈Y(t′) 7→ a(t′′) + o, ν]

1〉 ∈ V] ∧ 〈a(t′′, o) B a′(t′′′, o′), ν]
2〉 ∈ M] ∧ µ] =

bν] u ν]
1 u ν]

2ct,t′′′,o′})

where we have freely renamed the index variables whenever it was necessary to
avoid name clashes. A solution of a system S of nonuniform set constraints is a
couple (M], V]) which is invariant under the application of [[C]]] for any C ∈ S.

We are interested in the least solution of a system S of nonuniform set con-
straints. We can obtain an approximation of the least solution of S by computing
the limit of the abstract iteration sequence with widening (M]

n, V]
n)n≥0 defined

as follows: {
(M]

0 , V
]
0) = (⊥M] ,⊥V al])

(M]
n+1, V

]
n+1) = (M]

n, V]
n)∇ ([[C]]])∗C∈S(M]

n, V]
n)

where ([[C]]])∗C∈S denotes the application of all constraints of S in an arbi-
trary order, and ∇ is the product of the widening operators on M] and V al].
This provides us with an effective algorithm for computing an approximate so-
lution of the system, which is similar to that defined by Andersen [And94].
The main difference is the use of a widening operator to enforce convergence
because some abstract numerical lattices have infinitely increasing chains of
elements[CC76,CH78,Min01]. Once a post-fixpoint has been reached using this

algorithm, we can further refine the result by using a decreasing iteration se-
quence with narrowing defined in the same way. We observed from our experi-
ments that an iteration sequence with narrowing is always required in order to
obtain precise ranges for the timestamp and offset variables.

We now have to show how to extract nonuniform inclusion constraints from
the abstract interpretation of the surface semantics. Let S] be the abstract sur-
face semantics of a program P obtained from the analysis described in the previ-
ous section. We assign a unique pair of set variables (L`,R`) to each statement
` : ∗q = r or ` : q = ∗r of P , denoting respectively the points-to sets of the
lefthand and righthand sides of the assignment. Let %] = 〈ν], π]〉 be an abstract
environment, p a pointer variable of P and X a set variable. We denote by
CX ,p〈%]〉 the collection of nonuniform constraints defined as follows:

– If &x ∈ π](pa), then

〈X (t) ⊇ &x + o, bν] ⊕ {t = Λ, o = po}ct,o〉 ∈ CX ,p〈%]〉

– If blk]
`〈µ]〉 ∈ π](pa), then

〈X (t) ⊇ blk`〈t′〉+ o, bν] u µ] ⊕ {τ = t′, t = Λ, o = po}ct,t′,o〉 ∈ CX ,p〈%]〉

– If ref]
`〈µ]〉 ∈ π](pa), then

〈X (t) ⊇ L`(t′) + o, bν] u µ] ⊕ {τ = t′, t = Λ, o = po}ct,t′,o〉 ∈ CX ,p〈%]〉

Now, if ` : ∗p = q is a memory write statement of P and %] is the abstract
environment of S] at `, we generate the constraints:

CL`,p〈%]〉 ∪ CR`,q〈%]〉 ∪ {〈∗L`(t) ⊇ R`(t′),>V] ⊕ {t = t′}〉}

Similarly, for a memory read statement ` : ∗p = q we generate the constraints:

CL`,p〈%]〉 ∪ CR`,q〈%]〉 ∪ {〈L`(t) ⊇ ∗R`(t′),>V] ⊕ {t = t′}〉}

We denote by SP the system of all constraints generated in this way for the pro-
gram P . Let (M]

P , V]
P) be an approximation of the least solution of SP obtained

by an abstract iteration sequence as described previously. The abstract memory
graph M]

P is a sound global approximation of the memory graph at every point
of the program:

Theorem 2. For all state 〈λ, A,M, %, `〉 of the collecting semantics C of P , we
have M ∈ γM](M]

S).

The pointer analysis problem of [Ven02] has thus been reduced to the simpler and
more tractable problem of solving a system of nonuniform inclusion constraints.

We finish this formal description with a brief description of the constraint
generation for function calls. We associate a special set variable Fi(f) to the
i-th formal parameter of each function f of a C program. We denote by F0(f)
the variable corresponding to the return value of f. Now consider a function

call ` : p = f(p1, . . . , pn). Assuming that we are provided with a collection
X ,X1, . . . ,Xn of set variables describing the sets of addresses that may flow
through the return value and the parameters p, p1, . . . , pn of the function call,
we generate the following points-to equations:

〈F1(f) ⊇ X1,>V]〉
· · ·
〈Fn(f) ⊇ Xn,>V]〉
〈X ⊇ F0(f),>V]〉

In other words, function calls are treated uniformly : there are no numerical con-
straints on the index variables. This is not a problem in practice, since nonuni-
form behaviours usually take place at the function level in embedded applica-
tions. We do not detail the analysis of computed calls, which can be easily derived
from the semantics of the memory read operation p = ∗q.

We now illustrate the generation of equations. Consider the small program
of Example 3 that fills in an array of pointers. The equations generated after the
surface analysis are the following: 〈∗L6(t) ⊇ R6(t′), {t = t′, 0 ≤ t < 10}〉

〈L6(t) ⊇ &a + o, {0 ≤ o ≤ 4× t}〉
〈R6(t) ⊇ blk5〈t′〉+ o, {t = t′, o = 0, 0 ≤ t < 10}〉

After solving these constraints by using an abstract iteration sequence with
widening, we obtain the following abstract memory graph:

{〈(&a, o) B (blk5〈t〉, o′), {o = 4× t, o′ = 0, 0 ≤ t < 10}〉}

which describes the exact shape of the memory althrough the execution of the
program.

5 Experimental Evaluation

We have implemented the static analysis described in this paper for the full
C language. The analyzer itself consists of 9,000 lines of SML/NJ excluding
the front-end. We have interfaced the analyzer with the ckit [HOM] C front-
end which is also written in SML. We currently use the reduced product of
the lattice of linear equalities [Kar76] and the lattice of intervals [CC76] for
expressing numerical constraints. The analyzer first translates the C program
into an intermediate language in which all expressions and statements have been
broken down using a 3-address format. We then perform a dependency analysis
which is used to eliminate all arithmetic operations that are not involved in
pointer manipulations. This substantially shrinks down the size of the code to
analyze. Whole structure assignment has not been described in this paper and
deserves some attention. There are two possible ways of handling this construct,
either by expanding the assignment into a collection of individual assignments to
the fields of the structure or by analyzing the assignment as an atomic operation.

The former is made difficult by union types and structure-breaking type casts.
We chose the latter approach, which requires a straightforward extension of
nonuniform constraints in order to copy a packet of pointers at once.

We have applied the analyzer to a real piece of software: an on-board link
controller. The application contains about 25,000 lines of unprocessed C code.
It is a pointer intensive program with plenty of loop constructs operating on
multidimensional arrays of structures. It is quite representative of an average
size embedded program, which is the main target of our analysis. Very large
programs like those described in [VB04] are quite unusual. Our analysis is quite
efficient. It takes 210 seconds to parse the files, construct the abstract surface
semantics and generate the nonuniform inclusion constraints on a laptop with
a 900Mhz Intel Pentium and 1Gb of RAM running Linux under VmWare. The
resolution of these constraints only takes 21 seconds.

The results show that the analysis does discover nonuniform points-to rela-
tions. In particular, bidimensional arrays of distinct semaphores, arrays of func-
tions and tables of preallocated memory blocks for dedicated memory manage-
ment are exactly described. Surprisingly enough, the analysis uncovered a real
bug in this application. While we were reviewing the results of the analysis we
noticed that for some array array2 of dynamically allocated semaphores, there
was no linear relationship between the offset and the timestamps in the points-to
relations. The nonuniform points-to equations gave us instantly the location in
the program where the array was initialized. The initialization code looks like:

for (i = 0; i < 20; i++)
for (j = 0; j < 8; j++) {
array1[i][j] = semCreate ();
array2[j] = semCreate ();

}

The first array is properly initialized whereas the second one is reinitialized
multiple times, causing a memory leak. It should be noticed that the analysis
sucessfully inferred a nonuniform points-to relation for the bidimensional array
of semaphores. This bug was present from the very first version of the program
and has never been detected during the 18 months the software has been under-
going testing so far. This is an interesting application of this static analysis as a
sophisticated typechecker for collections of pointers.

6 Conclusion

We have presented a pointer analysis that is able to infer nonuniform points-to
relationships without the cost of existing flow-sensitive analyses [Deu94,Ven02].
The originality of our work is that it conciliates two approaches to pointer anal-
ysis, abstract interpretation and constraint-based analysis, which are often op-
posed one to each other. Although we could have expressed the whole analy-
sis within the framework of Abstract Interpretation [CC95], we think that a

constraint-based presentation is more compact and more intuitive for both un-
derstanding and implementing the analysis. We have shown on a representative
case study that our approach is tractable and achieves the expected level of pre-
cision. Unexpectedly, this analysis has been able to detect a subtle initialization
bug in a real application. It now remains to perform more extensive empirical
studies and investigate the use of the analysis in a real verification tool.

References

[And94] L. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, 1994.

[BCC+02] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.
Monniaux, and X. Rival. Design and implementation of a special-purpose
static program analyzer for safety-critical real-time embedded software, in-
vited chapter. In T. Mogensen, D.A. Schmidt, and I.H. Sudborough, editors,
The Essence of Computation: Complexity, Analysis, Transformation. Essays
Dedicated to Neil D. Jones, LNCS 2566, pages 85–108. Springer-Verlag, Oc-
tober 2002.

[BCC+03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.
Monniaux, and X. Rival. A static analyzer for large safety-critical soft-
ware. In Proceedings of the ACM SIGPLAN 2003 Conference on Pro-
gramming Language Design and Implementation (PLDI’03), pages 196–207.
ACM Press, June 7–14 2003.

[CC76] P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In Proceedings of 2nd International Symposium on Programming,
pages 106–130, 1976.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the 4th Symposium on Principles of Programming Languages,
pages 238–353, 1977.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frame-
works. In Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 269–282. ACM
Press, New York, NY, 1979.

[CC92] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of
Logic and Computation, 2(4):511–547, 1992.

[CC95] P. Cousot and R. Cousot. Formal language, grammar and set-constraint-
based program analysis by abstract interpretation. In Proceedings of the
Seventh ACM Conference on Functional Programming Languages and Com-
puter Architecture, pages 170–181. ACM Press, New York, NY, 1995.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 84–97. ACM Press, New York, NY, 1978.

[Cou81] P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick
and N.D. Jones, editors, Program Flow Analysis: Theory and Applications,
chapter 10, pages 303–342. Prentice-Hall, Inc., Englewood Cliffs, 1981.

[CR99] Satish Chandra and Thomas W. Reps. Physical type checking for c. In
Workshop on Program Analysis For Software Tools and Engineering, pages
66–75, 1999.

[Das00] Manuvir Das. Unification-based pointer analysis with directional assign-
ments. ACM SIGPLAN Notices, 35(5):35–46, 2000.

[Deu92] A. Deutsch. A storeless model of aliasing and its abstraction using finite
representations of right-regular equivalence relations. In Proceedings of the
1992 International Conference on Computer Languages, pages 2–13. IEEE
Computer Society Press, 1992.

[Deu94] A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-
limiting. In ACM SIGPLAN’94 Conference on Programming Language De-
sign and Implementation. ACM Press, 1994.

[FFSA98] Manuel Fähndrich, Jeffrey S. Foster, Zhendong Su, and Alexander Aiken.
Partial online cycle elimination in inclusion constraint graphs. ACM SIG-
PLAN Notices, 33(5):85–96, 1998.

[Gra91] P. Granger. Static analysis of linear congruence equalities among variables
of a program. In TAPSOFT’91, volume 493. Lecture Notes in Computer
Science, 1991.

[HOM] Nevin Heintze, Dino Oliva, and Dave MacQueen. The ckit front-end.
ckit@research.bell-labs.com.

[HT01] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using CLA: A
million lines of c code in a second. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 254–263, 2001.

[Kar76] M. Karr. Affine relationships among variables of a program. Acta Informat-
ica, pages 133–151, 1976.

[Min01] A. Miné. The octagon abstract domain. In AST 2001 at WCRE 2001, IEEE,
pages 310–319. IEEE CS Press, October 2001.

[Ste96] Bjarne Steensgaard. Points-to analysis by type inference of programs with
structures and unions. In Computational Complexity, pages 136–150, 1996.

[VB04] A. Venet and G. Brat. Precise and efficient static array bound checking for
large embedded C programs. In Proceedings of the International Conference
on Programming Language Design and Implementation, PLDI’04, 2004. To
appear.

[Ven96] A. Venet. Abstract cofibered domains: Application to the alias analysis of
untyped programs. In Proceedings of SAS’96, volume 1145 of Lecture Notes
in Computer Science, pages 266–382. Springer Verlag, 1996.

[Ven99] A. Venet. Automatic analysis of pointer aliasing for untyped programs.
Science of Computer Programming, 35(2):223–248, 1999.

[Ven02] A. Venet. Nonuniform alias analysis of recursive data structures and ar-
rays. In Proceedings of the 9th International Symposium on Static Analysis
SAS’02, volume 2477 of Lecture Notes in Computer Science, pages 36–51.
Springer, 2002.

[WL02] John Whaley and Monica S. Lam. An efficient inclusion-based points-to
analysis for strictly-typed languages. In Proceedings of the 9th International
Static Analysis Symposium, pages 180–195, September 2002.

